Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems
نویسندگان
چکیده
منابع مشابه
GKZ Hypergeometric Series for the Hesse Pencil, Chain Integrals and Orbifold Singularities
The GKZ system for the Hesse pencil of elliptic curves has more solutions than the period integrals. In this work we give different realizations and interpretations of the extra solution, in terms of oscillating integral, Eichler integral, chain integral on the elliptic curve, limit of a period of a certain compact Calabi–Yau threefold geometry, etc. We also highlight the role played by the orb...
متن کاملIterated Elliptic and Hypergeometric Integrals for Feynman Diagrams
We calculate 3-loop master integrals for heavy quark correlators and the 3-loop QCD corrections to the ρ-parameter. They obey non-factorizing differential equations of second order with more than three singularities, which cannot be factorized in Mellin-N space either. The solution of the homogeneous equations is possible in terms of convergent close integer power series as 2F1 Gauß hypergeomet...
متن کاملGkz Hypergeometric Systems and Applications to Mirror Symmetry
Mirror symmetry of Calabi-Yau manifolds is one of the most beautiful aspects of string theory. It has been applied with great success to do non-perturbative calculation of quantum cohomology rings1−10. More recently, new ideas have been developed to apply mirror symmetry to study the moduli space of the type II string vacua compactified on a Calabi-Yau manifold. Some of the recent work on verif...
متن کاملTheta Hypergeometric Integrals
A general class of (multiple) hypergeometric type integrals associated with the Jacobi theta functions is defined. These integrals are related to theta hypergeometric series via the residue calculus. In the one variable case, theta function extensions of the Meijer function are obtained. A number of multiple generalizations of the elliptic beta integral associated with the root systems An and C...
متن کاملLimits of elliptic hypergeometric integrals
In [16], the author proved a number of multivariate elliptic hypergeometric integrals. The purpose of the present note is to explore more carefully the various limiting cases (hyperbolic, trigonometric, rational, and classical) that exist. In particular, we show (using some new estimates of generalized gamma functions) that the hyperbolic integrals (previously treated as purely formal limits) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2020
ISSN: 1029-8479
DOI: 10.1007/jhep04(2020)121